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ABSTRACT The pulmonary system is a common site for bacterial infections in ceta-
ceans, but very little is known about their respiratory microbiome. We used a small,
unmanned hexacopter to collect exhaled breath condensate (blow) from two geo-
graphically distinct populations of apparently healthy humpback whales (Megaptera
novaeangliae), sampled in the Massachusetts coastal waters off Cape Cod (n � 17)
and coastal waters around Vancouver Island (n � 9). Bacterial and archaeal small-
subunit rRNA genes were amplified and sequenced from blow samples, including
many of sparse volume, as well as seawater and other controls, to characterize the
associated microbial community. The blow microbiomes were distinct from the sea-
water microbiomes and included 25 phylogenetically diverse bacteria common to all
sampled whales. This core assemblage comprised on average 36% of the microbiome,
making it one of the more consistent animal microbiomes studied to date. The closest
phylogenetic relatives of 20 of these core microbes were previously detected in marine
mammals, suggesting that this core microbiome assemblage is specialized for marine
mammals and may indicate a healthy, noninfected pulmonary system. Pathogen screen-
ing was conducted on the microbiomes at the genus level, which showed that all blow
and few seawater microbiomes contained relatives of bacterial pathogens; no known
cetacean respiratory pathogens were detected in the blow. Overall, the discovery of a
shared large core microbiome in humpback whales is an important advancement for
health and disease monitoring of this species and of other large whales.

IMPORTANCE The conservation and management of large whales rely in part upon
health monitoring of individuals and populations, and methods generally necessitate
invasive sampling. Here, we used a small, unmanned hexacopter drone to noninva-
sively fly above humpback whales from two populations, capture their exhaled
breath (blow), and examine the associated microbiome. In the first extensive exami-
nation of the large-whale blow microbiome, we present surprising results about the
discovery of a large core microbiome that was shared across individual whales from
geographically separated populations in two ocean basins. We suggest that this core
microbiome, in addition to other microbiome characteristics, could be a useful fea-
ture for health monitoring of large whales worldwide.
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A number of large whale populations are listed as endangered or critically endan-
gered (1), and their conservation and management greatly depend on understand-

ing the relationship between anthropogenic disturbances and health (2–5). The pul-
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monary system is a common site of cetacean infection and disease (6, 7), and yet cases
are diagnosed mostly in live-stranded or dead whales (8) and rarely in the wild. In
humans, exhaled breath is used to test for bacterial and fungal infections of the lower
respiratory tract (9). Therefore, examining the microorganisms in the exhaled breath of
whales, commonly referred to as blow, may serve as an important indicator of whale
respiratory health, including the identification of potential bacterial, fungal, and viral
respiratory pathogens.

Advances in aerial drone technology offer new opportunities for studying the health
of whales remotely and noninvasively. For example, the exhaled breath of large whales
can be sampled with a small aerial drone (10), given that whales exhale large volumes
of air when they surface and usually breathe several times during a surfacing interval.
The exhaled breath contains mucus and moisture that, when released into the com-
parably cooler external air, condense to form a visible mass of vapor, which can be
collected. Often blow is collected by approaching the whale in a small boat and holding
an ~7-m pole with a collection plate above the blow hole (11, 12), requiring a skilled
team and presenting safety risks to both the researchers and the whale. However, as
mentioned above, blow was successfully collected by flying a remotely operated drone
through the visible mass of vapor, thus offering a less invasive and safer platform for
blow collections (10).

Knowledge of respiratory-associated microorganisms in cetaceans is limited. Several
studies examined the diversity of respiratory-associated bacteria in captive and wild
bottlenose dolphins (Tursiops truncatus) and provided preliminary evidence that dol-
phins host a core group of bacteria associated with the respiratory system (13–15). A
cultivation-based study of blow from killer whales (Orcinus orca) identified pathogenic
and antibiotic-resistant bacteria and fungi (16), which may be presenting health risks to
the whales. The only study of blow-associated microorganisms in baleen whales was
conducted using taxonomic screening for specific bacteria, leaving a number of ques-
tions remaining about the broader diversity of the blow microbiome (10). Given this
limited knowledge about the large-whale respiratory microbiome and the possible
implications of using the microbiome for health and pathogen monitoring, a broader
understanding of the large-whale blow microbiome is needed.

In this study, we sought to determine if drone-captured blow microbiomes of large
whales could be used to remotely monitor the respiratory health of large whales.
Specifically, we sought to characterize the microbiomes associated with drone-
collected samples of blow to assess commonalities and differences between the blow
microbiomes of individual whales and identify the presence of potential pathogens. To
address these goals, a small, unmanned hexacopter drone (10) (Fig. 1a) was used to
collect blow samples from humpback whales (Megaptera novaeangliae) from Race Point
Channel, north of Cape Cod, MA, and coastal waters surrounding Vancouver Island, in
both British Columbia and Washington State. We examined the blow microbiomes, as
well as those associated with the surface seawater, by sequencing and comparing
partial small-subunit (SSU) rRNA genes of bacteria and archaea. These analyses revealed
that blow microbiomes are distinct from seawater and contain an extensive network of
consistent core microbiome members whose absence could serve as an important
framework for health monitoring.

RESULTS
Blow microbiomes are similar between individuals and distinct from surface

seawater. By flying a small, remotely operated hexacopter drone 2 to 4 m above
humpback whales (Fig. 1b), blow was collected from 17 whales off Cape Cod and nine
whales near Vancouver Island (see Table S1 in the supplemental material). Partial
bacterial and archaeal SSU rRNA genes were amplified from DNA extractions of the
blow samples, including replicate blows from eight animals; environmental controls (a
nonblow flight and nine replicate surface seawater samples from around Vancouver
Island; sampling equipment was not available for Cape Cod seawater); and technical
controls (DNA extraction of sterile swabs and PCR blanks) and sequenced, resulting in
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2,337 to 180,141 sequences for the noncontrol samples. Minimum entropy decompo-
sition (MED) (17), a sensitive method for partitioning sequences into operational
taxonomic units (here referred to as MEDs or nodes), identified 616 MEDs for the entire
data set. A cluster dendrogram analysis of Bray-Curtis dissimilarity (18) of the MEDs
showed that community compositions of the technical control samples were similar to
each other but different from the majority of blow samples (Fig. 2). Five sparse-volume
(volume observed in the field) blow samples (WA_A_F06, H_C_a, H_A_a, H_K, and
H_B_b) clustered with the technical controls, indicating that the volume of these
samples likely was so low that they only reflected the background microbial signal of
technical contaminants such as laboratory reagents. Thus, these five low-volume
samples were removed from the data set and are not included in the results presented
below. Although two blow samples (BC_A_b_mix and BC_A_B_unk) from the same
whale were more similar to the surface seawater than to the other humpback blow
samples (Fig. 2), seawater microorganisms may be incorporated into the blow; hence,
these blow samples were included in all further analyses. The compositions of the
humpback blow microbiotas were significantly different from those of the microbiotas
of surface seawater (permutational multivariate analysis of variance [PERMANOVA], F �

61.364, P � 0.001). Although the compositions of the humpback whale blow microb-

a

b

FIG 1 (a) Photograph of the APH-22 hexacopter launching for flight, with a petri dish atop and a 96-well
PCR plate attached on a forward arm for whale blow sampling. (b) Photograph of the hexacopter
collecting blow from a humpback whale off Cape Cod. Photographs courtesy of the authors.
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iotas were 50 to 90% similar to each other, the microbiotas of the blow samples
collected off Cape Cod were nevertheless significantly different from those collected
around Vancouver Island (PERMANOVA, F � 5.8224, P � 0.001), and neither finding was
impacted by the factor of sequencing depth (PERMANOVA with pairwise tests, P �
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archaeal SSU rRNA genes grouped using minimum entropy decomposition (17) and compared using Bray-Curtis dissimilarity (18). The
categories “controls,” “seawater,” and “humpback blow” were inferred based on the clustering patterns and sample types.
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0.05). The technical controls were used only to assess the microbial signal of blow and
seawater samples, and while they appear in Fig. 2, they are not represented in any
further analyses but do serve as a constant source for assessing contamination (see
below description of core microbiome).

Diverse assemblage of microorganisms found in humpback blow. The hump-
back whale blow samples contained a diverse assemblage of microorganisms, in terms
of both richness and phylogeny. In whale blow, the observed number of MEDs, which
is comparable to a fine-resolution species richness index, ranged from 164 to 515, with
an average of 321 (Fig. 3a). The number of MEDs in surface seawater samples generally
fell into this range as well, suggesting that the blow and surface seawater support a
similarly rich community of cells (Fig. 3a). There was considerably more consistency
between the numbers of observed MEDs within replicate samples in the seawater
microbiome than for the Vancouver Island humpback whale blow samples (the only
blow samples that were replicated), which could be related to inconsistencies in whale
blows, volume of blow collection, or sequencing depth (Fig. 3a). Simpson’s index of
diversity (19), which also considers evenness, generally ranged above 0.90, indicating
high microbial diversity in the samples. The Simpson index was comparable for blow
and seawater samples from Vancouver Island but was more variable for the Cape Cod
blow samples (Fig. 3b).

A phylogenetically diverse assemblage of sequences that spanned 15 phyla of
Bacteria and two phyla of Archaea was identified in the humpback whale blow
microbiomes. Several classes were shared with the seawater samples, including Gam-
maproteobacteria, Flavobacteriia, and Alphaproteobacteria (Fig. 4). However, the whale
blow samples from both locations harbored classes not common in the surface
seawater, such as Actinobacteria, Bacilli, Clostridia, Fusobacteriia, Bacteroidia, Acidimicro-
biia, Epsilonproteobacteria, Deltaproteobacteria, Erysipelotrichia, and Mollicutes (Fig. 4).

Extensive core microbiome in whale blow with relatedness to other marine
mammals. Twenty-six MEDs were present in all humpback whale blow samples.
However, one of these MEDs, 6038, identified as Bacillus, was considered a technical
contaminant and not a member of the blow microbiome because it was found in all
technical control samples and is a common contaminant in laboratory reagents (20).
The remaining 25 MEDs common to all blow samples were considered “core” members
of the humpback whale blow microbiome. These core microbiome members spanned
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seven phyla or classes (for the Proteobacteria) and ranged in relative abundance from
0.01 to 18% of the total community in each blow sample (Fig. 5). Collectively, the 25
core microbiome members comprised 36.0% (standard deviation [SD], 10.5%) of the
total humpback blow sequences from whales residing in both geographic locations.

Phylogenetic analysis of the core microbiota using ARB and the SILVA database
(v.128) revealed that 20 of the 25 core members were most closely related to microbial
sequences recovered from other species of marine mammals, most commonly from the
mouths and blowholes of bottlenose dolphins (Fig. 5; Table 1). Core members with
homology to other marine mammal-associated microbes that were represented at
mean abundances of 1% or greater in all humpback blow samples were Corynebacte-
rium MED6786 (bottlenose dolphin forestomach), Tenacibaculum MED7942 (bottlenose
dolphin blowhole), Porphyromonas MED5795 (bottlenose dolphin mouth and hump-
back whale skin), Cardiobacteriaceae MED1312 (bottlenose dolphin blowhole), Oceano-
spirillaceae MED6423 and MED6459 (bottlenose dolphin forestomach and blowhole),
Moraxella MED9495 and MED7186 (bottlenose dolphin mouth), Psychrobacter MED2426
(bottlenose dolphin mouth and blowhole), and Arcobacter MED3986 (bottlenose dol-
phin blowhole and forestomach). The nine other core MEDs with homology to se-
quences recovered from marine mammals were present at mean abundances less than
1% (Fig. 5; Table 1). Additionally, two of the core members, Corynebacterium MED6836
and Zimmermannella MED8466, shared homology to sequences previously identified in
terrestrial mammals (Fig. 5; Table 1). Last, three core members present in the humpback
blow shared homology to sequences commonly recovered from seawater: “Candidatus
Actinomarina” MED857; the Roseobacter-affiliated Rhodovulum 9687; and SAR11, Sur-
face 1 clade 9833. Indeed, these three seawater-affiliated MEDs were well represented
in the seawater samples, each present at average abundances ranging from 4.3 to 5.1%.

No cetacean respiratory pathogens detected in humpback blow. To identify
samples that might be suitable for respiratory pathogen screening, the taxonomy of the
blow MEDs was screened at the level of genus against a custom pathogen database
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that included human and animal pathogens recognized by the American Biological
Safety Association, as well as previously identified and potential pathogens from
studies of marine mammals (7, 21–27) (Table S2). One hundred fifteen MEDs from whale
blow and seawater spanning 31 genera had a genus-level phylogenetic affiliation with
pathogens listed in the database (Fig. 6). The pathogen relatives identified in the whale
blow were numerous and distinct from those present in the seawater samples (Fig. 6).
Of the potential pathogens identified in the blow samples, 10 genera were previously
identified in other species of marine mammals, and of those, Corynebacterium was the
only genus also represented in the core microbiome of humpback whale blow (Table 2).
Specifically, two uncharacterized Corynebacterium species were previously cultivated
from the spleen, blood, and lymph nodes of bottlenose dolphins following mortality
(21), although it should be noted that this genus harbors many nonpathogens that
often associate with healthy humans (28, 29). Of the potential pathogens identified in
the humpback blow samples, none were known cetacean respiratory pathogens.

DISCUSSION

In the first examination of whale blow microbial diversity, we show that blow from
humpback whales supports a diverse and rich community of microorganisms with a
number of features that may be useful for monitoring health. First, our study demon-
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strates that the microbial communities in blow and surface seawater are different,
indicating that whale blow is not just aerosolized seawater. Although both baleen and
toothed whale blows were previously compared to seawater (10, 16), this was the first
study to apply more comprehensive microbial diversity analyses to whale blow. Indeed,
there were some surface seawater-associated bacteria within the humpback blow
examined in our study, but this is not surprising because seawater may remain in the
upper tract between breaths and enter and leave the blowhole cavity and the upper
nasal tract of a surfacing whale during the inhalation phase (M. Moore, unpublished
observations), to the point where these samples could be described as seawater
lavages of the upper respiratory tract seeded with condensed exhalation. Three hump-
back blow core MEDs, including bacteria from the globally abundant SAR11 clade (30),
were well represented in the seawater samples, at relative abundances of 4 to 5%,
suggesting that the most abundant cells in the seawater are likely the cells making their
way into the upper respiratory tract. Furthermore, the remaining 22 core microbiome
sequences were most closely related to marine and terrestrial mammals, suggesting
that these cells were, indeed, coming from the whales, not the seawater. The exhaled
breath of most mammals is believed to comprise cells that originate from both the
mouth and the nasopharynx because they are anatomically connected (31–33). Because
the nasopharynx of cetaceans is not connected to the mouth, cetacean breath passes
through only the respiratory tract; therefore, the breath microbes originating from the
cetacean are from the respiratory tract and almost certainly do not include oral
microbes. Two core members of the blow microbiome were previously detected on
humpback whale skin, Porphyromonas (MED5795) and Psychrobacter (MED2426) (34). It
is possible that these whale skin-associated microbes reside on the epithelium of the
blowhole and become aerosolized with the force of the whale’s exhalation. Thus, in
addition to seawater-associated microbes, a mixture of pulmonary bacteria and mi-
crobes associated with the epithelial cells of the blowholes likely comprise the blow
microbiome in cetaceans.

The second and possibly most useful feature of the humpback whale blow micro-
biome for health monitoring is that it contains a surprisingly high number of core
microbiome members shared by all individuals, despite our samples being collected

TABLE 1 List of core MED nodes of SSU rRNA gene sequences with taxonomic affiliations and description of environment where the
most similar sequences were recovered

MED Taxonomic affiliation Environment of most similar sequences (GenBank identifier)

6786 Corynebacterium Bottlenose dolphin forestomach (JQ192966)
6836 Corynebacterium Horse uterus (CP011546)
857 “Candidatus Actinomarina” Seawater next to bottlenose dolphin (JQ195517)
8466 Zimmermannella Human skin (GQ043066)
678 Leucobacter Bottlenose dolphin blowhole (FJ959933)
680 Bacteroidetes VC2.1 Bac22 Bottlenose dolphin mouth (JQ210604)
7942 Tenacibaculum Bottlenose dolphin blowhole (FJ959464)
5795 Porphyromonas Bottlenose dolphin mouth (KC259428) and humpback whale skin (GU202009)
8352 Guggenheimella Bottlenose dolphin mouth (JQ208689)
8398 Helcococcus Bottlenose dolphin mouth (FJ959814)
5986 Helcococcus Sea lion rectum (JQ208548)
8097 Dielma Bottlenose dolphin mouth (JQ209430)
1312 Cardiobacteriaceae Bottlenose dolphin blowhole (FJ960054)
6327 Cardiobacteriaceae Bottlenose dolphin mouth (KC260696)
6423 Oceanospirillaceae Bottlenose dolphin forestomach (JQ194233) and blowhole (FJ959835)
6459 Oceanospirillaceae Bottlenose dolphin forestomach (JQ193528) and blowhole (FJ959835)
9495 Moraxella Bottlenose dolphin mouth (JQ216648)
2426 Psychrobacter Bottlenose dolphin blowhole (FJ960065) and mouth (KC260479)
7254 Moraxella Bottlenose dolphin mouth (JQ216648)
7186 Moraxella Bottlenose dolphin mouth (JQ216648)
7188 Moraxella Bottlenose dolphin mouth (JQ216648)
9687 Rhodovulum Sub-Antarctic seawater (AY697867)
9388 SAR11, Surface 1 clade Gulf of Mexico seawater (KU578707)
3986 Arcobacter Bottlenose dolphin blowhole (FJ959747) and forestomach (JQ194125)
7357 Oceanivirga Bottlenose dolphin forestomach (JQ193505) and mouth (KC260320)
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from different populations residing in distinct ocean basins. Defining core microorgan-
isms in a host environment is helpful because the persistence of core members
between individual animals suggests that these core microbes may be beneficial for the
host (35, 36). Core microbiomes are generally identified by applying criteria such as
sequences or taxonomic groups that are present in 30 to 80% of hosts, and only rarely
is 100% membership within all hosts used as the defining criterion (35). Here, we used
the 100% host membership criterion at a highly discriminative species-type level of
phylogenetic similarity (as determined by MED) and identified 25 core microbiome
members, which to our knowledge is an unprecedented number of core members at
this discriminative scale for any marine or terrestrial host microbiome. The most similar
finding using the 100% core membership criterion is for the human gut and hands,
which host 18 and 5 core microbial members, respectively (37, 38). While core mem-
bership in the human respiratory tract has not been investigated extensively, studies
suggest high variability in the lower respiratory tract microbiome between individuals
(39). Stable and persistent core microbiomes with low interindividual variability, as
observed here for the humpback whales, suggest that the microbiome and/or host may
receive benefits from the presence of this collective group of cells, such as nutritional
or immune benefits. However, examining blow microbiomes from unhealthy or dis-
eased animals will be necessary to understand if the core microbiome does indeed
change with health state. Blow samples from populations of large whales with healthy
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and unhealthy individuals, such as the North Atlantic right whales, may be particularly
useful for this comparison (40).

Another reason that the presence of a core microbiome in whale blow could be a
useful feature for monitoring health is that the absence of core members and/or the
presence of atypical microbes in the blow could suggest an alteration in the growth
environment or immune response of the microbes, as is typical for pulmonary infec-
tions and diseases (33). Analyzing microbiomes associated with blow from humpback
whales with known pulmonary conditions would greatly advance our understanding
about the stability of the core microbiome. However, these conditions are challenging
to diagnose in the wild. Instead, examining the blow microbiomes of whales with

TABLE 2 List of potential pathogens identified in the humpback whale blow according to genus-level identity, as well as descriptions of
recognized pathogens and putative marine mammal pathogens

Genus MED(s) in whale blowa

Putative marine mammal
pathogen (reference[s])

No. of recognized
pathogens in genus

Acinetobacter 9761, 8888, 5164, 8857, 5165, 1070, 9765, 1067 Acinetobacter lwoffii (21) NAb

Actinobacillus 6581 NA 9
Arcobacter 8192, 3986, 8223, 8193, 8194, 3989, 8222 NA 2
Arthrobacter 100 Arthrobacter cumminsii (16) NA
Bacillus 6010 NA 4
Bacteroides 6758 NA 14
Balneatrix 4335 NA 1
Campylobacter 3645, 3641, 3642, 3651, 80 NA 11
Capnocytophaga 6603 NA 6
Chryseobacterium 7829 NA 4
Corynebacterium 6786, 6788, 6836, 8673, 8671, 6797, 8652,

8654, 3514
Corynebacterium spp. (21) 33

Escherichia-Shigella 5544 Escherichia coli (21) 0
Fusobacterium 35 Fusobacterium varium (21) 13
Haemophilus 9046, 9047, 9045, 5437 NA 18
Helcococcus 4258, 8395, 8398, 8377, 261, 5988, 8396,

1947, 1949, 257, 8397,8378, 5986, 260
NA 2

Helicobacter 3988 NA 12
Lactobacillus 4629, 4625, 4645, 322 NA 3
Lactococcus 2216 NA 1
Listeria 5860 NA 2
Moraxella 7227, 8609 NA 9
Mycoplasma 7640, 3008, 7642 Mycoplasma sp. (16) 63
Neisseria 9019, 9020 NA 11
Peptostreptococcus 8129, 8130 NA 10
Porphyromonas 9273, 9078, 9274, 5800, 9077, 9112, 5796, 9114,

5799, 5795, 5797, 9109, 9080, 5486
NA 12

Pseudoalteromonas 5116, 5119 NA 1
Pseudomonas 9740, 5159, 9739, 5873 Pseudomonas aeruginosa (7) 9
Psychrobacter 8626, 2428, 2426, 7254, 2065, 8585, 4878,

8627, 8584, 2062, 2441,4879, 7255,
8610, 9480, 9482, 8582, 7157, 4874

NA 1

Sphingomonas 231 NA 2
Staphylococcus 6011, 6041, 6038 Staphylococcus aureus (7, 16),

Staphylococcus cohnii (16),
Staphylococcus epidermidis (16, 21),
Staphylococcus warneri (16),
Staphylococcus sp. (16),
Staphylococcus delphini (23)

13

Streptococcus 7098, 3720, 7097, 2227, 2217, 2228 Alpha-hemolytic Streptococcus (16),
Streptococcus zooepidemicus (7),
Streptococcus group D (21)

27

Veillonella 1666, 1668 NA 1
Vibrio 2695 Vibrio anguillarum (16),

Vibrio alginolyticus (16),
Vibrio wodanis (16),
Vibrio sp. (21)

15

aMED nodes (17) present in the core microbiome are in bold.
bNA, not applicable.
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field-diagnosable conditions, such as poor body condition detectable by drone-enabled
photogrammetry (41), will help advance our understanding of the variability of the core
microbiome in relation to health.

The third feature of the blow microbiome of humpback whales that is important for
health monitoring is that the microbiomes can be coarsely screened for pathogens
using the amplicon sequencing approach. We chose to screen for relatives of patho-
gens, instead of just species-level identity to known pathogens, because cetacean
pathogens are not well described, and the pulmonary and blowhole system of ceta-
ceans is unique compared to other mammals. As knowledge of specific cetacean
respiratory pathogens increases, a stricter sequence similarity approach could be
applied. Until that time, analyzing blow microbiomes for potential pathogens using
amplicon sequencing provides a means to screen for samples for further analysis of
pathogens using quantitative PCR (qPCR) or metagenomics. Additionally, this amplicon-
based method provides a means to understand the other possibly mutualistic or
commensal members of the respiratory microbiome that would not be available if
analysis were limited to pathogen detection. In this study, no known marine mammal
respiratory pathogens were identified for further verification using qPCR or metag-
enomics. Recently, Raverty et al. suggested that potentially pathogenic bacteria and
fungi, including some exhibiting resistance to antimicrobial agents, identified in killer
whale blow and surface seawater may pose a threat to the endangered killer whale
population (16). Large whales, including humpbacks, frequently reside in coastal areas
of high anthropogenic influence, including wastewater and sewage dispersal (42, 43),
and therefore, the probability of whales being exposed to pathogens is high. Whales
also exhibit behaviors, such as surfacing in close proximity to each other or feeding
cooperatively (44, 45), which could facilitate the spread of pathogens between indi-
viduals. Thus, screening for potential pathogens in the blow microbiome is a particu-
larly useful endeavor for large whales.

A fourth useful feature of the blow microbiome is that the richness, diversity, and
sequence homology of microorganisms detected in whale blow were on par with those
previously identified in the blowholes of bottlenose dolphins (13–15), the only com-
parable microbiome data sets (i.e., broad taxonomic microbiome surveys that used
cultivation-independent approaches). This feature suggests that blow microbiome
monitoring criteria for one species may be applicable to other cetaceans. Although the
criteria for sequence delineation differed between this study (which used MEDs) and
the previous dolphin studies (which used 97% sequence similarity), all studies exam-
ined surface seawater and found similar microbiome richness patterns between the
marine mammal and seawater environments, thus making the data sets comparable on
this generalized level.

To further advance the blow microbiome as a health monitoring tool for large
whales, several features require consideration and future development. While drones
are safer and less invasive to the whale than pole sampling, they can result in
low-volume samples. Indeed, several low-volume samples collected from this study
were found to be similar in composition to samples from flight and technical controls.
Contaminating DNA is frequently identified in low-volume samples (20, 46), including
those targeting low microbial biomass from human lungs (39), and the present study
suggests that flight and technical controls are necessary to ensure that biological
samples have sufficient volume and microbial biomass for accurate comparisons. Also,
the differences in richness and community composition that were observed in the
replicate blow samples were probably related to inconsistencies in whale blows or blow
collections and signify the importance of repeated sampling. In addition to these
recommendations, we acknowledge that this study presents a limited description of
the microbiome by focusing on bacteria and archaea. Protists, viruses, and fungi can
also be important indicators of respiratory illnesses (26, 47), and detection of these
organisms may be achievable on some of the higher-volume samples using a
metagenomics-based sequencing approach. Efforts should also be made to examine
the growth environment for the blow-associated microorganisms, including character-
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ization of blow chemistry, temperature, and salinity, which could inform conditions for
microbial cell growth, enhance cultivation efforts, and ultimately allow us to better
evaluate the beneficial, commensal, or pathogenic potential of the microbial cells
residing in the whale’s respiratory tract. Last, this and a previous study (10) used drones
to collect blow-associated microorganisms from large whales, where this approach
appears to be broadly applicable. These methods may also be applicable to smaller
cetaceans, but this still needs to be examined in the context of the ability of small
unmanned aerial systems (UAS) to operate near small cetaceans unobtrusively.

Conclusions. This study demonstrates that remote sampling via drones provides a
noninvasive means to collect whale blow for microbiome analysis. Using this technique,
we showed that different humpback whales and populations harbor similar microbial
communities in their exhaled blow, including the presence of a large number of specific
core bacteria shared between all individuals. The persistence of these core members in
apparently healthy individuals suggests that they may be indicative of a healthy,
noninfected pulmonary system, and their presence or absence could be informative for
health monitoring of humpback whales and possibly other large whales.

MATERIALS AND METHODS
Sample collection. Exhaled breath condensate (blow) was collected from humpback whales

(Megaptera novaeangliae) in the Race Point Channel, north of Cape Cod, MA (n � 17), during July 2015
and in two locations around Vancouver Island: Johnstone Strait and surrounding channels, British
Columbia (n � 6 whales with replicate samples for all animals), in August 2016 and off San Juan Island,
Washington State (n � 3 whales with replicate samples for 2 animals), in September 2016. Samples were
collected using a small, unmanned hexacopter drone (APH-22; Aerial Imaging Solutions, Old Lyme, CT)
operated by a pilot and copilot team from a vessel (48) (Fig. 1). Collection surfaces differed between the
flights and locations. For Cape Cod, the hexacopter’s dome and one to three 96-well PCR plates fixed to
the struts of the hexacopter were used as the sterile collection surfaces. For Vancouver Island, one
forward-facing sterile, 96-well PCR plate; the dome of the hexacopter; and, for some whales, a 150-mm-
diameter sterile petri dish affixed to the top of the dome (Fig. 1a) were used. Prior to flight, the
hexacopter’s propellers, arms, struts, and dome were sterilized with 95% isopropanol. The hexacopter
then was flown 2 to 4 m or more above the blowhole, and once the whale exhaled, the hexacopter was
returned to the boat so that the sample could be processed. Using sterile technique, the blow was
swabbed from the collection surfaces using sterile cotton-tipped swabs or flocked swabs (Copan
Diagnostics, Inc., Murrieta, CA). Each swab then was placed in a sterile 2-ml cryovial, frozen in a liquid
nitrogen vapor shipper, and transferred to �80°C until processing. In one case, a sample had a
large-enough volume to pipette and thus was pipetted directly into a 2-ml cryovial prior to freezing.
Sampled whales were photographed for identification purposes using standard methods to identify
duplicate samples from the same whale (49).

As a control, the hexacopter was flown with sterile PCR plates attached for the same flight duration,
altitude over the water, and distance from the boat as had been done when collecting actual blow
samples. Upon landing, a sterile cotton-tipped swab was used to wipe the PCR plates and was placed in
a sterile 2-ml cryovial, frozen, and stored in the same manner as the blow samples. To sample surface
seawater microbes, 1 liter surface seawater was collected at 0.25-m depth from the same general area
as the blow collections around Vancouver Island and filtered through an 0.22-�m Supor membrane filter
(Millipore, Boston, MA) using a peristaltic pump. Each filter was placed in a sterile 2-ml cryovial, frozen
in a liquid nitrogen vapor shipper, and transferred to �80°C until processing. Two replicate seawater
samples were collected per sampling site.

Sample preparation, PCR amplification, and sequencing. Nucleic acids were isolated from the
swabs, 50 �l of the pipetted sample, or the filters using the PowerBiofilm DNA isolation kit (Mo Bio
Laboratories, Inc., Carlsbad, CA). Barcoded 515FY and 806RB (50, 57) primers, utilized by the Earth
Microbiome Project, were used to amplify the V4 region of the SSU rRNA gene in triplicate 25-�l PCR
mixtures per sample on a Bio-Rad Thermocycler (Hercules, CA) as follows: an initial denaturation step at
95°C for 2 min; 30 to 38 cycles (blow samples) or 20 to 25 cycles (seawater samples) of 95°C for 20 s, 55°C
for 15 s, and 72°C for 5 min; and an extension step at 72°C for 10 min. Each PCR mixture contained 1 ng
of DNA, 200 nM barcoded primers, GoTaq Flexi DNA polymerase, GoTaq Flexi 5� colorless buffer, 2.5 mM
MgCl2, and 200 �M deoxynucleoside triphosphate (dNTP) mix (Promega, Madison, WI). Products of the
triplicate reactions were combined for each sample, screened on a 1% agarose–Tris-borate-EDTA (TBE)
gel using HyperLadder (50 bp; Bioline USA Inc., Taunton, MA) to confirm amplicon size, and purified
either with a 1.5% agarose-TBE gel using the MinElute gel extraction kit (Qiagen, Valencia, CA) or without
the gel extraction using a Wizard PCR cleanup system (Promega, Madison, WI). A low-concentration
microbial mock community with equimolar rRNA operon counts (obtained through BEI Resources, NIAID,
NIH, as part of the Human Microbiome Project; genomic DNA from microbial mock community B [even,
low concentration], v5.1L, for 16S rRNA gene sequencing, HM-782D) was amplified and sequenced with
the samples to test for sequencing errors. To test for reagent contamination from the DNA isolation kit,
50 �l sterile water or a dry swab was included in each batch of isolations. Each PCR run included sterile
water as a negative control, for which amplification was not detected via gel electrophoresis for any of
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the runs. After quantification on a Qubit 2.0 fluorometer with a double-stranded DNA (dsDNA) high-
sensitivity assay kit (Invitrogen Corp., Carlsbad, CA), the PCR products were pooled into two libraries of
equal concentrations. Amplicons were sequenced over two 2- by 250-bp MiSeq (Vancouver Island) and
NanoSeq (Cape Cod) formats (Illumina, San Diego, CA) at the University of Illinois W. M. Keck Center for
Comparative and Functional Genomics.

Sequence data processing. Raw sequences (6,358,878) were assembled, denoised, and quality
filtered using mothur v.1.36.1 (51). Specifically, barcoded primers were removed, sequence reads were
joined, sequences were trimmed to 255 bp, and ambiguous base pair calls were removed, resulting in
sequences with an average of 253 bp. The sequencing error rate was calculated as 0.0015771% from the
mock community samples. Sequences from technical and flight control samples did not meet quality
control criteria. However, due to the low-volume nature of the blow samples, these samples were initially
included in the analysis (Fig. 2). Sequences were classified using a k-nearest neighbor consensus
algorithm in mothur with the SILVA rRNA sequence database (v.123) (52, 53), and those that were
identified as chloroplasts (233,253 sequences, from the seawater samples) and unknown (355 sequences)
were removed from the data set. Chimeric sequences found by UCHIME (54) within mothur also were
removed, and the cumulative outcome of these quality control measures resulted in 4,903,825 sequences
(22.9% loss of sequences). Minimum entropy decomposition (MED) (17) was used to bin sequences to
homogeneous operational taxonomic units (here referred to as MEDs) on the entire data set, 4,903,825
sequences, with a minimum substantive abundance (M) set to 490 to reduce the impact of noise,
resulting in 616 nodes and a further reduction of the data to 4,183,042 reads. Taxonomy was assigned
to sequences representing each MED using the k-nearest neighbor consensus algorithm in mothur with
the nonredundant SILVA rRNA sequence database v.123 that was customized for humpback whale skin
for an unrelated study by adding Tenacibaculum and Psychrobacter hypervariable region IV sequences
from the partial (shorter-read) version of the same database.

Microbial community analysis. Using the Primer software (v7.0.9; Primer-E, Auckland, New Zealand),
Bray-Curtis dissimilarity (18) was calculated from nonrarefied, square-root-transformed relative abun-
dances of the MED nodes and compared using a single linkage clustering algorithm. The resulting
dendrogram showed that five sparse-volume blow samples clustered with the technical control samples
(DNA isolation, PCR, and mock community controls). Based on this high similarity to the technical
controls, these samples were considered to have been of such low volume that they only reflected the
background microbial signal of the lab reagents. Therefore, these five samples were removed from the
remaining analyses. Differences in microbial community compositions between whale populations and
between seawater and whale blow were tested on Bray-Curtis dissimilarity (18) using PERMANOVA�
(v7.0.9; Primer-E, Auckland, New Zealand) with replicate samples treated as a random effect and
sequencing depth also tested as a factor using the categories of �50,000 and �50,000 sequences. The
phyloseq package (55) in R was used to examine alpha diversity of the humpback blow and seawater
MEDs, without repeated subsampling, including richness and Simpson’s index of diversity (19). R also was
used to determine the core MEDs (MEDs present in all high-quality samples of humpback whale blow).
Taxonomic affiliations of the core microbiome and most-homologous sequence were determined using
ARB with the most recent nonredundant SILVA database (v.128) at the time of analysis. The ggplot2
package (56) in R was used to construct the taxonomic stacked bar and box plot figures.

Pathogen database and screening. A custom pathogen database of phylogenetic affiliations was
constructed to screen the humpback whale blow microbiome sequences for the presence of potential
pathogens at the genus level. The database included putative pathogens of any marine mammal body
site identified from a compilation made by Raverty and colleagues (16) and from other published studies
(see Table S2 in the supplemental material). To account for any bacteria that have not yet been identified
as marine mammal pathogens, the database also included any human and animal bacterial pathogens
recognized by the American Biological Safety Association (899 pathogens). To ensure that the humpback
blow and seawater MEDs were resolved to the most descriptive taxonomic level offered by the SILVA
database, the representative sequences were assigned taxonomic identity using both the k-nearest
neighbor algorithm in mothur with the SILVA rRNA sequence database customized for humpback whale
skin as mentioned above and the SINA Alignment Service v1.2.11 (52).

Data availability. Sequence data from this study are available at NCBI under BioProject accession no.
PRJNA401637. Representative MED sequences are available in fasta format in Data Set S1 in the
supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00119-17.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.04 MB.
DATA SET S1, TXT file, 0.2 MB.
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